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ABSTRACT 

It is known that the classical Zak Transform is a linear unitary transformation from L
2
(R) onto L

2 
(Q) whose 

image can be completely characterized. In this paper, we shall construct a Boehmian space B1 containing L
2
(R) and another 

Boehmian space B2 containing L
2 

(Q) and define Zak transform as a continuous linear map of B1 onto B2. We shall also 

prove that this extended definition is consistent with the classical definition and that there are Boehmains which are not L
2
 

– functions but for which we can define the generalized Zak transform.  
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INTRODUCTION 

Motivated by the concept of Boehme’s regular operator [4] the theory of Boehmian spaces is developed in the 

literature [2], [5], [7], [8], and [11]. Further various integral transforms are also studied in the context of Boehmians with 

their properties [1], [6], [9], and [10]. 

In this paper we shall extend the concept of Zak transform in the context of Boehmians and study its properties. 

We shall recall the classical theory of Zak transform in section 2 and we construct suitable Boehmian spaces for our 

definition of Zak transform in section 3. In section 4 we define the Zak transform and study its properties. Let R, ₵ denote 

the usual real line, the complex plane respectively and Q = [0, 1) x [0, 1). 

Let L
2
(R) and L

2 
(Q) denote the set of all Lebesgue measurable functions f on R with  |f  𝑥 |

∞

−∞
2
 dx < ∞ and the 

set of all Lebesgue measurable functions F on Q with the double integral   |F (t, w)|
1

0

1

0
2
 dt dw < ∞ respectively, where dt, 

dw denotes the Lebesque measures on [o, 1). 

| f |2
2 =  |f  𝑥 |

∞

−∞
2
 dx and | F |2

2 =   |F (t, w)|
1

0

1

0
2
 dt dw. 

PRELIMINARIES 

We first recall the theory of Zak transform from L
2 
(R) onto L

2 
(Q). 

The Zak transform 𝑍𝑎 [f] of a function f is defined by 

𝛷 (f) = 𝑍𝑎 [f] (t, w) = (𝑍𝑎 f) (t, w) ≜  𝑎  f (at +  ak) ∞
𝑘=−∞  𝑒−2𝜋ikw , 

where a > 0, t and w are real, f ∈ L
2
(R). 

It follows that 𝛷 (f) ∈ L
2 
(Q) and 𝛷 is a linear unitary transformation from L

2
(R) onto L

2 
(Q). 

Moreover an inversion formula is also given by 
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f (t) =   𝑍 f  t, w 
1

0
dw, - ∞ < t < ∞, 

f  (-2𝜋𝑤) = 
1

 2𝜋
  𝑒−2𝜋iwt1

0
 (Z f) (t, w) dt and 

f (2𝜋x) = 
1

 2𝜋
  𝑒−2𝜋ixt1

0
 (Z f ) (t, x) dt, 

where f  is Fourier transform of f [12]. 

BOHEMIAN SPACE 

We recall the L
2
 – Boehmian space 𝐵𝑅

2  , see [1]. 

As in the context of Boehmians in [3] we take the complex vector space as L
2
(R) and the commutative semi-group 

as D(R) with usual convolution defined by  

(ϕ ∗ ѱ ) (x) =  ϕ  𝑥 − t 
∞

−∞
ѱ  t  dt, x ∈ R, 

and the operation from L
2
(R) x D(R) into L

2
(R) also as the same convolution functions on R defined above. We 

take ∆ as the set of all sequences (ϕn) whose elements from D(R) satisfying 

∆1    ϕn
∞

−∞
(x) dx = 1          ∀ n ∈ N 

∆2    |ϕn
∞

−∞
(x)| dx ≤ M      ∀ n ∈ N for some M > 0 

∆3   S (ϕn) → 0   as n →∞, where  S (ϕn) = sup {|x|: x ∈ R, ϕn(x) ≠ 0}. 

Now we construct a new Boehmian space as follows: 

Take the vector space as L
2 
(Q) and the commutative semigroup as D(R). 

Define ⊗: L
2 
(Q) x D(R) → L

2 
(Q) by 

   (F⊗ ϕ) (t, w) =  F t, w − 𝑥 
∞

−∞
ϕ x  dx. 

Lemma 3.1: If F ∈ L
2 
(Q) and ϕ ∈ D(R) then F ⊗ ϕ ∈ L

2 
(Q). 

Proof: If F ∈ L
2 
(Q)  ⇨  F: Q →ℂ  such that   |F (t, w)|

1

0

1

0
2
 dt dw < ∞,  

Where Q = [0, 1) x [0, 1). 

We have to prove that F ⊗ ϕ ∈ L
2 
(Q) for ϕ ∈ D(R).  

Consider   | F ⊗ ϕ  (t, w)|
1

0

1

0
2
 dt dw =   |  F t, w − 𝑥 . ϕ 𝑥  d𝑥 |

∞

−∞

1

0

1

0
2
 dt dw 

         ≤   (  F t, w − 𝑥    ϕ 𝑥   d𝑥 )
∞

−∞

1

0

1

0
2
dt dw  

Since R has finite measure with respect to the measure | ϕ(x) |dx, now we can apply Jensen’s inequality and get 

the last integral dominated by 

          |F t, w − 𝑥 |
∞

−∞

1

0

1

0
2
 | ϕ(x)| dx dt dw 

=   |ϕ 𝑥 |
∞

−∞
 dx   |F(t, w − 𝑥)|

1

0

1

0
2
 dt dw, (By Fubini’s Theorem)      

=    ϕ 𝑥  
∞

−∞
 dx . | F |2

 = M.| F |2
 < ∞,    (since F ∈ L

2 
(Q) and ∆2) 
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𝑇𝑖𝑠 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 that,  F ⊗ ϕ ∈ L
2 
(Q). 

Lemma 3.2: If ϕ1, ϕ2 ∈ D then ϕ1 ∗ ϕ2  = ϕ2 ∗ ϕ1  ∈ D.  

For this Boehmian space also we take the ‘Delta Sequences’ as ∆. 

Lemma 3.3: If F ∈ L
2 
(Q), (ϕn) ∈ ∆, then F ⊗ ϕn  →F as n →∞. 

Proof: Let ∈ > 0 be given. Using the fact that Cc (Q) is dense in L
2 
(Q) we can choose H ∈ Cc (Q) such that 

| F − H| 2 < ∈                                                (1) 

 Now 

| F ⊗ ϕn − F| 2 ≤ | F ⊗ ϕn − H ⊗ ϕn| 2 +| H ⊗ ϕn − H| 2 + | H − F| 2                                                            (2) 

 Consider 

| F ⊗ ϕn − H ⊗ ϕn |2
2   =   | F ⊗ ϕn − H ⊗ ϕn  (t, w)|

1

0

1

0
2
 dt dw  

         =   |  (F t, w − 𝑥 − H t, w − 𝑥 ) ϕn 𝑥  d𝑥|
∞

−∞

1

0

1

0
2
 dt dw 

        ≤    (  F t, w − 𝑥 − H t, w − 𝑥  . |ϕn   𝑥 | d𝑥)
∞

−∞

1

0

1

0
2 dt dw 

        ≤      F t, w − 𝑥 − H t, w − 𝑥  
∞

−∞

1

0

1

0
2 |ϕn 𝑥 |dx dt dw  

          (By Jensen’s inequality) 

         ≤   |ϕn 𝑥 | d𝑥 .    | F t, w − 𝑥 − H(t, w − 𝑥 |
1

0

1

0

∞

−∞
2
 dt dw  

         (By Fubini’s Theorem) 

        ≤   |ϕn 𝑥 | d𝑥 . | F − H| 
∞

−∞
2
 ≤ M | F − H|  2 <  M ∈2

 → 0 as n →∞. 

Therefore,   | F ⊗ ϕn − H ⊗ ϕn |2
  → 0 as n → ∞                          (3) 

Next 

  | H ⊗ ϕn − H |2
2   =   | H ⊗ ϕn − H  (t, w)|

1

0

1

0
2
 dt dw  

                  =   |  (H t, w − 𝑥 − H t, w ) ϕn 𝑥  d𝑥|
∞

−∞

1

0

1

0
2
 dt dw,     (By ∆1) 

                 ≤    (  H t, w − 𝑥 − H t, w  
∞

−∞

1

0

1

0
 |ϕn(x) |dx) 

2
 dt dw 

                 ≤      H t, w − 𝑥 − H t, w  
∞

−∞

1

0

1

0
2
|ϕn(x) |dx dt dw 

                                                                                              (By Jensen’s inequality) 

                 ≤   |ϕn 𝑥 | d𝑥 .    | H t, w − 𝑥 − H(t, w |
1

0

1

0

∞

−∞
2
 dt dw  

      (By Fubini’s Theorem) 

                 ≤   |ϕn 𝑥 | d𝑥 .  
∞

−∞
 | H t, w − 𝑥 − H(t, w) |

𝑘
2
 dt dw ∀ n ≥ N                                   (4), 

Where K compact subset of Q,  with support of H  ∁  K  ∁  Q and N1 ∈ N is such that S (ϕ𝑛 ) < 1  ∀ n ≥ N1.  
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Since H is uniformly continuous on compact set K. Hence for given ∈ > 0 there exists 𝛿 > 0 such that 

|H (x, y) – H (u, v)| < ∈  whenever |(x, y) – (u, v)| <  𝛿. 

Now choose N2 ∈ N such that   S (ϕn) < δ     ∀ n ≥ N2.  

Therefore R.H.S. of (4) < M ∈2
  dt dw

𝑘
 ≤ C ∈2

, for some 0 < C < ∞ → 0 as n → ∞. 

Therefore, | H ⊗ ϕn − H |→ 0 as n → ∞             (5)  

Using (1), (3) and (5) in (2), we get, | F ⊗ ϕn − F |→ 0 as n → ∞ ⇒  F ⊗ ϕn  →F in L
2 
(Q) as n →∞. 

Lemma 3.4: If F1, F2 ∈ L
2 
(Q) and (ϕn) ∈ ∆, such that F1⊗ ϕn  = F2⊗ ϕn  ∀ n ∈ N then F1 = F2 in L

2 
(Q). 

Proof: As F1⊗ ϕn  = F2⊗ ϕn    ∀ n ∈ N 

 Letting n →∞, we get F1 = F2. 

Lemma 3.5: If 𝐹𝑛  → F as n → ∞ in L
2 
(Q) and ϕ ∈ D(R) then 𝐹𝑛 ⊗ ϕ → F⊗ ϕ as n → ∞  in L 

2
(Q).  

Proof: From above  

||  𝐹𝑛 ⊗ ϕ−F ⊗ ϕ||2
2   =   |  𝐹𝑛   t, w − 𝑥 − F t, w − 𝑥 )ϕ 𝑥  d𝑥|

∞ 

−∞

1

0

1

0
 2 dt dw  

                       ≤    ( |𝐹𝑛 t, w − 𝑥 − F t, w − 𝑥  |
∞

−∞

1

0

1

0
 |ϕ(x) |dx) 

2
 dt dw 

                       ≤     𝐹𝑛 t, w − 𝑥 − F t, w − x  
∞

−∞

1

0

1

0
2
| ϕ(x) |dx dt dw 

                 (By Jensen’s inequality) 

                       ≤   |ϕ 𝑥 | d𝑥  
∞

−∞
   |𝐹𝑛 t, w − 𝑥 − F t, w − 𝑥  |

1

0

1

0
2
 dt dw  

                       ≤   |ϕ 𝑥 | d𝑥 . ||𝐹𝑛 − F||2
2 

∞

−∞
 ≤  C ||𝐹𝑛 − F||2

2 → 0 as n → ∞,  

for some suitable constant C. 

|  𝐹𝑛 ⊗ ϕ − F ⊗ ϕ |→ 0 as n → ∞         

Therefore we get  𝐹𝑛 ⊗ ϕ  → F ⊗ ϕ in L
2 
(Q) as n → ∞. 

Lemma 3.6: If 𝐹𝑛  → F as n → ∞ in L
2 
(Q) and (ϕn) ∈ ∆ then 𝐹𝑛  ⊗ ϕn  →F as n → ∞ in L

2 
(Q). 

Proof: Consider ||𝐹𝑛 ⊗ ϕn  –  F||2 ≤ ||(𝐹𝑛  – F) ⊗  ϕn|| 2 + ||F⊗ ϕn  –  F||2                                                                        (1) 

 Now, ||(𝐹𝑛 − F) ⊗ ϕn||2
2 =   | 𝐹𝑛–  F ⊗ ϕn t, w |

1

0

1

0
2
 dt dw 

                   =   |  (𝐹𝑛 t, w − 𝑥 − F t, w − 𝑥 ) ϕn 𝑥  d𝑥|
∞

−∞

1

0

1

0
 2 dt dw  

                   ≤    (  𝐹𝑛 t, w − 𝑥 − F t, w − 𝑥  . |ϕn 𝑥 | 
∞

−∞

1

0

1

0
 dx) 

2
 dt dw  

                   ≤      𝐹𝑛 t, w − 𝑥 − F t, w − 𝑥  
∞

−∞

1

0

1

0
2
 |ϕn 𝑥 | dx dt    

                                                                                                            (By Jensen’s inequality) 

                   =   |ϕn   𝑥 | d𝑥  
∞

−∞
   |𝐹𝑛 t, w − 𝑥 − F t, w − 𝑥  |

1

0

1

0
2
 dt dw 
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                 =   |ϕn   𝑥 | d𝑥 . ||𝐹𝑛 − F||2
2 

∞

−∞
 ≤  M . ||𝐹𝑛 − F||2

2 → 0 as n → ∞    

           (By ∆2 and 𝐹𝑛  → F as n → ∞)  

                   ⇒ ||(𝐹𝑛  – F) ⊗ ϕn||2 → 0 as  n →  ∞                               (2) 

Also by Lemma 3.3 we get ||F⊗ ϕn  - F||2 → 0 as n → ∞                                (3)  

Using (2) and (3) in (1) we get, ||𝐹𝑛 ⊗ ϕn   - F||2 → 0 as n → ∞ therefore 𝐹𝑛  ⊗ ϕn  → F as n → ∞  in L
2 
(Q). 

Now the Boehmian space B𝑄
2  can be constructed in a canonical way. The notation of 𝛿  - convergence on B𝑄

2  is 

defined as follows 𝑦𝑛  
𝛿
→ y as n → ∞ if there exists (ϕk) ∈ ∆ such that 𝑦𝑛  ⊗ ϕk  and y⊗ ϕk  ∈ L

2 
(Q) and 

𝑦𝑛  ⊗  ϕk  → y ⊗ ϕk    in  L
2 
(Q). 

We shall use the following lemma; whose proof can be taken from [5]. 

Lemma 3.7: 𝑦𝑛  
𝛿
→ y as n → ∞ in B𝑄

2   if and only if there exists 𝐹𝑛𝑘
, 𝐹𝑘  ∈ L2 

(Q), and (ϕk) ∈ ∆, such that 𝑦𝑛  =  
𝐹𝑛𝑘

ϕk
 ,  y = 

 
𝐹𝑘

𝜙𝑘
  and  𝐹𝑛𝑘

 → 𝐹𝑘  in L
2 
(Q) as n →∞, for each k ∈ N. 

Where  
𝐹𝑛𝑘

ϕk
 and  

𝐹𝑘

ϕk
  denotes equivalence classes containing the quotients of sequences

𝐹𝑛𝑘

ϕk
 𝑎𝑛𝑑

𝐹𝑘

𝜙𝑘
  𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.  

ZAK TRANSFORM 

Definition 4.1: Define the Zak transform 𝑍𝑎 : B𝑅
2  → B𝑄

2   by     

  𝑍𝑎   
 𝑓𝑛

ϕn
   ≜  

Φ( 𝑓𝑛 )

ϕn
 , where   Φ(𝑓𝑛 ) is a Zak transform of  𝑓𝑛  and  

Φ( 𝑓𝑛 )

ϕn
  𝑑𝑒𝑛𝑜𝑡𝑒 the equivalence class containing 

the quotient of sequence  
Φ( 𝑓𝑛 )

ϕ n
. 

Lemma 4.1: If f ∈ L2
(R) and ϕ ∈ D(R) then Φ (f∗ ϕ ) (t, w) = (Φf⊗ ϕ ) (t, w) 

Proof: Φ (f  ∗  ϕ ) (t, w) =   𝑎   f ∗ ϕ  (at + ak)∞
𝑘=−∞  𝑒−2𝜋ikw  

            =    𝑎   f
∞

−∞
[a t − 𝑥 + ak]∞

𝑘=−∞  ϕ (x) dx 𝑒−2𝜋ikw  

            =    [ a
∞

−∞
 f a(t − 𝑥 + ak)∞

𝑘=−∞ 𝑒−2𝜋ikw ] ϕ (x) dx   (Since ϕ ∈ D(R)) 

            =     Φ
∞

−∞
f (t-x, w) ϕ (x) dx 

            =   (Φf ⊗ ϕ ) (t, w)    

Therefore  Φ(f  ∗ ϕ ) (t, w) = (Φ f ⊗ ϕ ) (t, w)    ∀ (t, w)∈ Q. 

Lemma 4.2: The Zak transform 𝑍𝑎 : B𝑅
2  →  B𝑄

2  is well defined. 

Proof: Let   
  𝑓𝑛

ϕn
   ∈ B𝑅

2  then  𝑓𝑛  ∈ L2
(R) and (ϕn) ∈ ∆. This implies that Φ(𝑓𝑛 ) ∈ L2 

(Q). 

 We shall show that 
Φ( 𝑓𝑛 )

ϕn
 is a quotient. Since  

  𝑓𝑛

ϕn
  ∈ B𝑅

2 ⇒ 
  𝑓𝑛

ϕn
 is a quotient we have, 𝑓𝑛 ∗ ϕm  = 𝑓𝑚  ∗ ϕn  ∀ m, n ∈

 N. 

 Applying the classical Zak transform on both sides and by Lemma 4.1 we get 
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Φ(𝑓𝑛 )⊗ ϕm  = Φ(𝑓𝑚 )⊗ ϕn   ∀ m, n ∈ N ⇒
Φ(  𝑓𝑛 )

ϕn
 is a quotient. 

 Next we show that the definition of 𝑍𝑎  is independent of the choice of the representative. 

 Let 
  𝑓𝑛

ϕn
  = 

𝑔𝑛

ѱn  
, then we have 𝑓𝑛 ∗ ѱm   = 𝑔𝑚 ∗ ϕn  ∀ m, n ∈ N. 

 Again by applying classical Zak transform and by using Lemma 4.1, we get 

Φ(𝑓𝑛 ) ⊗ ѱm   = Φ(𝑔𝑚 )⊗ ϕn  ∀ m, n ∈ N. Hence the lemma follows. 

Theorem 4.1: The Zak transform  𝑍𝑎  : B𝑅
2  →  B𝑄

2  is a linear map. 

Proof: Let  
 𝑓𝑛

ϕn
 ,  

𝑔𝑛

ѱ𝑛
 ∈ 𝐵𝑅 ,

2  α, β∈ ₵  Now   𝑍𝑎  (∝  
 𝑓𝑛

ϕn
 + β  

𝑔𝑛

ѱn  
 ) =𝑍𝑎   

∝𝑓𝑛 ∗ѱn  +β𝑔𝑛 ∗ϕn

ϕn ∗ѱn
   

                     =   
Φ(∝ 𝑓𝑛 ∗ѱn  +β𝑔𝑛 ∗ϕn  

ϕn ∗ѱn  
  ,  (By definition) 

         =   
∝Φ( 𝑓𝑛 )⊗ѱn  +βΦ(𝑔𝑛 )⊗ϕn  

ϕn ∗ѱn  
  ,  (By Lemma 4.1)    

         =   
∝Φ( 𝑓𝑛 )

ϕn
+  

βΦ(𝑔𝑛 ) 

ѱn  
            

         = ∝  
Φ( 𝑓𝑛 )

ϕn
 + β  

Φ(𝑔𝑛 ) 

ѱn  
    

               = ∝ Za  
 𝑓𝑛  

ϕn
   + β Za   

𝑔𝑛  

ѱn   
   

 In this proof we have used the fact that Φ is linear wherever it is required. 

Theorem 4.2: The Zak transform 𝑍𝑎 :B𝑅
2  →  B𝑄

2   is one-one.  

Proof: Let  
 𝑓𝑛

ϕn
 , 

𝑔𝑛

ѱn  
  ∈ B𝑅

2 .   If 𝑍𝑎   
 𝑓𝑛  

ϕn
   = Za  

𝑔𝑛  

ѱn  
   then we have  

Φ( 𝑓𝑛 )

ϕn
   =  

Φ(𝑔𝑛 ) 

ѱn  
  and hence we get  

Φ(𝑓𝑛 )⊗ ѱm   = Φ(𝑔𝑚 ) ⊗ ϕn  ∀ m, n ∈ N. 

 Using Lemma 4.1 We get Φ (𝑓𝑛 ∗ ѱm ) = Φ(𝑔𝑚 ∗ ϕn)       ∀ m, n ∈ N.  

 Since, Φ is one-to-one we get, 𝑓𝑛 ∗ ѱm   = 𝑔𝑚 ∗ ϕn           ∀ m, n ∈ N 

 (Since Zak transform is isometric from L
2
(R) onto L

2 
(Q)).   

 This implies that  
 𝑓𝑛

ϕn
  = 

𝑔𝑛

ѱn  
 . Therefore,   𝑍𝑎    is one-to-one. 

Theorem 4.3:  
𝐹𝑛

ϕn
 =  𝑍𝑎   

 𝑓𝑛

ϕn
    if and only if Fn ∈ L2 

(Q) ∀ n ∈ N, in particular 𝑍𝑎 : B𝑅
2  → B𝑄

2  is onto.  

Proof: Since  
𝐹𝑛

ϕn
  = 𝑍𝑎   

 𝑓𝑛

ϕn
   = 

Φ( 𝑓𝑛 )

ϕn
 , this implies that Fn ∈ L2 

(Q) ∀ n ∈ N. 

 Conversely if there exists  
𝐹𝑛

ϕn
  ∈ B𝑄

2   such that 𝐹𝑛 ∈  L2(Q)  , then we can choose  𝑓𝑛  ∈ L2
(R) Such that Φ(𝑓𝑛 ) = Fn 

∀ n ∈ N. 

 First we show that 
 𝑓𝑛

ϕn
  is a quotient. Since 

𝐹𝑛

ϕn
 is a quotient we have 

𝐹𝑛 ⊗ ϕm  = 𝐹𝑚 ⊗ ϕn  ∀ 𝑚, n ∈ N i.e. Φ(𝑓𝑛 )⊗ ϕm  = Φ(𝑓𝑚 )⊗ ϕn  ∀ m, n ∈ N. 
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By Lemma 4.1, we have Φ ( 𝑓𝑛 ∗ ϕm ) = Φ( 𝑓𝑚 ∗ ϕn) ∀ m, n ∈ N 

Since Φ is one-one we get,  𝑓𝑛 ∗ ϕm  =  𝑓𝑚 ∗ ϕn  ∀ m, n ∈ N⇒  
 𝑓𝑛

ϕn
 is a quotient. 

Therefore  
 𝑓𝑛

ϕn
 ∈ B𝑅  ,

2  Such that 𝑍𝑎   
 𝑓𝑛

ϕn
   =  

Φ( 𝑓𝑛 )

ϕn
  =  

Fn

ϕn
  

Hence the theorem follows. 

Theorem 4.4: The Zak transform    𝑍𝑎 :  B𝑅
2  ⟶  B𝑄

2  is consistent with Φ :  L2
(R) ⟶ L

2 
(Q).  

Proof: Let f ∈ L2
(R). Then by Lemma 4.1, we have 

𝑍𝑎   
𝑓  ∗ ϕn

ϕn
   =  

Φ f ∗ ϕn  

ϕn
 = 

Φ(f)⊗ϕn )

ϕn
  

 Hence the theorem proof is completed. 

Theorem 4.5: The Zak transform   𝑍𝑎 : B𝑅
2  ⟶  B𝑄

2   is consistent with respect to the 𝛿  - convergence.             

Proof: Let 𝑥𝑛  
𝛿
→  x   as n ⟶ ∞  in B𝑅

2 , then by Lemma 3.7 there exist, 𝑓𝑛𝑘  ,
 𝑓𝑘   ∈ L2

(R), and (ϕn) ∈ ∆ such that  𝑥𝑛   =  
𝑓𝑛𝑘

ϕk
  , 

x =  
𝑓𝑘

𝜙𝑘
  and 𝑓𝑛𝑘  → 𝑓𝑘  as n → ∞ in L

2
(R) for each k ∈ N.  Since Φ is continuous from L

2
(R) ⟶ L

2 
(Q), this implies Φ(𝑓𝑛𝑘

) 

⟶ Φ(𝑓𝑘) as n ⟶ ∞ in L
2 
(Q) for each k ∈ N.   

 This shows that  
Φ(𝑓𝑛𝑘

)

ϕk
  

𝛿
→  

Φ(𝑓𝑘  )

ϕk
   as n ⟶ ∞ in B𝑄

2 . 

 Therefore 𝑍𝑎   is consistent with respect to the δ – convergence.       

A COMPARATIVE STUDY 

 We know that L
2
(R) is properly contained in B𝑅

2  (for example compactly supported distributions belong to B𝑅
2  but 

do not represent L
2 

– function) and we have proved that 𝑍𝑎  is consistent with Φ. Thus our theory extends the classical Zak 

transform on L
2
(R) to a Boehmian space as a continuous linear map of B𝑅

2  into B𝑅
2  whose image can be completely 

characterized.  

CONCLUSIONS  

In this paper, we extend the definition of classical Zak transform to larger class and this is consistent with the 

classical definition. There are some functions which are not Zak transformable in classical sense but for which we can 

obtain the generalized Zak transform.   
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